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A Galerkin method is used to calculate the finite amplitude, steady, axisymmetric 
convective motions of an infinite Prandtl number, Boussinesq fluid in a spherical shell. 
Convection is driven by a temperature difference imposed across the stress-free, iso- 
thermal boundaries of the shell. The radial gravitational field is spherically symmetric 
and the local acceleration of gravity is directly proportional to radial position in the 
shell. Only the case of a shell whose outer radius is twice its inner radius is considered. 
Two distinct classes of axisymmetric steady states are possible. The temperature and 
radial velocity fields of solutions we refer to as ‘even’ are symmetric about an equa- 
torial plane, while the latitudinal velocity is antisymmetric about this plane; solutions 
we refer to as ‘general’ do not possess any symmetry properties about the equatorial 
plane. The characteristics of these solutions, i.e. the isotherms, streamlines, spherically 
averaged temperature profiles, Nusselt numbers, etc., are given for Rayleigh numbers 
Ra as high as about 10 times critical for the even solutions and 3 times critical for the 
general solutions. Linear stability analyses of the nonlinear steady states show that the 
general solutions are the preferred form of axisymmetric convection when Ra is less 
than about 4 times critical. Furthermore, while the preferred motion at the onset of 
convection is non-axisymmetric, axisymmetric convection is stable when Ru exceeds 
about 1.3 times the critical value. 

1. Introduction 
Solid state mantle convection is now recognized as the most efficient means of 

transferring heat from the earth’s interior to its surface (Tozer 1967; Turcotte & 
Oxburgh 1972; Oxburgh & Turcotte 1978; Richter 1978; Schubert 1979). To determine 
how this heat transport occurs, we must understand the nature of thermal convection 
in infinite Prandtl number fluids (the Prandtl number of the earth’s mantle, i.e. the 
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ratio of its kinematic viscosity to its thermal diEusivity is about loz3). Furthermore, 
while convection in the uppermost mantle may be modelled in a planar geometry, a 
spherical geometry in required to properly describe whole mantle convection. Thus, the 
major objective of the present paper is to determine the characteristics of infinite 
Prandtl number thermal convection in spherical shells. We need not be concerned with 
effects of rotation since the Coriolis force is negligible in the highly viscous mantle (the 
Taylor number, which measures the ratio of Coriolis forces to viscous forces is O( 10-l6) 
for whole mantle convection). Basic fluid dynamical calculations of finite-amplitude 
thermal convection in spherical geometry have been carried out by Hsui, Turcotte & 
Torrance (1972) andYoung (1974).Numericalmodelsof thethermalstates of planetary 
interiors based on computations of axisymmetric convection in spheres and spherical 
shells have been constructed by Turcotte et al. (1972), Young & Schubert (1974), 
Cassen & Young (1975), Schubert & Young (1976) and Schubert, Young & Cassen 
(1977). 

Steady state, nonlinear convection in spherical shells may be realized in either of two 
forms - axisymmetric motion, which is analogous to two-dimensional rolls in a plane 
fluid layer heated from below, or non-axisymmetric motion, which is analogous to 
three-dimensional convection in a plane fluid layer. Each of these two forms of con- 
vection may exist as motions which either exhibit symmetry properties about an 
‘equatorial’ plane or motions which do not. Solutions which have equatorially sym- 
metric temperature and radial velocity fields and an equatorially antisymmetric 
latitudinal velocity field are referred to as ‘even’. ‘General’ solutions are those not 
possessing these symmetry properties. Young’s (1974) computations of axisymmetric 
and fully three-dimensional convection in spherical shells were restricted to the even 
flows. Busse’s (1 975) analysis of the preferred motion at the onset of convection is able 
to discriminate between axisymmetric and fully three-dimensional patterns only for the 
even solutions. 

In  this paper we use a Galerkin technique to calculate the steady state, axisym- 
metric, nonlinear, convective motions in an infinite Prandtl number, Boussinesq fluid 
in a relatively thick spherical shell heated from below. We will carry out a reasonably 
complete study of the properties of the even and general axisymmetric steady states 
for a range of modestly supercritical Rayleigh numbers. In  addition, we will perform 
stability analyses to decide which form of axisymmetric steady convection is the 
preferred one and whether the axisymmetric steady flows are unstable to azimuthal 
perturbations. 

2. Mathematical formulation 
We consider an infinite Prandtl number Pr (Pr = V / K  where v is the kinematic 

viscosity and K is the thermal diffusivity) Boussinesq fluid in a spherical shell. The 
validity of the Boussinesq approximation in mantle convection has been discussed by 
Schubert (1 979) and others referenced therein. The stress-free, isothermal boundaries 
of radii R,, R, (R, > R,) are maintained a t  temperatures T,, T, (2”’ > TJ, respectively. 
The density is assumed constant except for the buoyancy term and all other thermo- 
dynamic and transport properties of the fluid are also assumed constant. The fluid is 
devoid of internal heat sources and the local acceleration of gravity is directly propor- 
tional to radial position in the shell, as is appropriate to a homogeneous fluid sphere of 
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density p. The non-dimensional equations which describe the motion of the fluid 
are 

v.v  = 0, (2.1) 

(2.2) (I - 9 )  RaV x (Or)  + V x V2v = 0, 

ao - + + v . V ) ( O , + O )  = 0%. 
at 

In  (2.1) - (2.3), r, the velocity v, time t ,  and temperature have been assumed dimen- 
sionless with respect to d = R, - R,, K / d ,  d 2 / K  and AT = TI - T,, respectively. O(r, t )  is 
the temperature deviation from the basic state conduction profile eC(r), 

where 7 = RJR, is the shell thickness parameter. The Rayleigh number Ra is given by 

ago ATd3 
Ra = 

V K  ’ 

where a is the coefficient of thermal expansion and go is the value of the acceleration of 
gravity at the outer radius. Equation ( 2 . 2 )  is the curl of the momentum equation, while 
(2.1) and (2.3) are the standard continuity and temperature equations. The boundary 
conditions for (2.1)-(2.3) are 

(2.7) 
a 2  

ar2 
O = v,, = - (rv,.) = 0 a t  r = rl, r2, 

where v,, is the radial velocity component (Chandrasekhar 1961). 
The solenoidal velocity field can be written in terms of poloidal and toroidal func- 

tions which automatically satisfy the continuity equation (Chandrasekhar 1961). 
However, one can show that the velocity field is purely poloidal in the infinite Prandtl 
number limit (see appendix and compare with a similar result of Busse 1967 for planar 
geometry). Thus, we introduce the poloidal function @(r, t )  in terms of which v is given 

where ( r ,  O , # )  are spherical co-ordinates and the differential operator L2 is 

l a  i a2 
~2 = -- -(sine$,) -- - 

sin8 a8 sin2 8 a#2 

(Chandrasekhar 1961). The linear ‘momentum’ equation (2.2) can be written in terms 
of @ as 

= (1-7)  RaL20 (2.10) 

(Chandrasekhar 1961). 
9-2 
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We are interested in constructing axisymmetric steady convective solutions and 
testing their stability to non-axisymmetric perturbations. There exists a stream 
function Y for an axisymmetric velocity field in terms of which 

(2.11) 

By comparing (2.11) and (2.8) in the case a@/+ = 0 we find 

Y = -sinOa@/aO. (2.12) 

We will use the Galerkin method to find the axisymmetric solutions to the basic 
equations and boundary conditions. Accordingly, we expand 0 and @ in terms of 
Legendre polynomiaIs Pz (cos 19) and radial functions as follows 

m w  
0 = C 2 rlj(t) J2sinhj(r-r1)4(cos19), (2.13) 

2=0 j=l 

(2.14) 

(2.15) 

The radial functions for 0 are chosen in a straightforward manner; the trigonometric 
functions sinAj(r - rl) automatically satisfy the boundary conditions (2.7) on 0. The 
functions f,(r) for the poloidal velocity potential are not immediately obvious. They 
can be chosen so that (2.13) and (2.14) are exact solutions of the ‘ momentum ’ equa- 
tion which automatically satisfy the boundary conditions (2.7) on v,. Upon substi- 
tuting (2.13) and (2.14) into (2.10) one obtains 

The boundary conditions on vr when expressed in terms offj(r) are 

f --- WZj 
zj  - dr2 - 0 at r = rl ,r2.  

(2.16) 

(2.17) 

The functionsf,,(r) are numerically constructed to satisfy (2.16) and (2.17). 
The initial value problem for the expansion coefficients rzk(t) is formulated by sub- 

stituting (2.13) and (2.14) into the temperature equation (2.3), using (2.8) to calculate 
v from @, multiplying by sin kn(r - r l )  ~ ( C O S  0) and integrating over the fluid region. 
The procedure eventually leads to 

where 

W w w  

(2.18) 

(2.19) 

(2.20) 

(2.21) 
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(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

It is important to realize that c , ~  = 0 if n + m + l  is odd. Thus, Nnnc(jlk is zero for 
n + m + I odd. If I is odd, it is clear from (2.18) that the nonlinear term vanishes if n+ m 
is even. Thus, if initial conditions are such that all rlk are zero for 1 odd, then T1k for I odd 
remains zero for all t .  In  other words, if an initial motion contains only even Legendre 
polynomials, it will remain equatorially symmetric with time (Young 1974). 

3. Numerical procedure 
The infinite sums in (2.18) must of course be replaced by finite ones. We take I ,  m, 

and n as large as N, and i, j, k as large as N,. Convergence of the finite series representa- 
tions is verified by increasing No and N, until pertinent characteristics of the solutions 
become sufficiently insensitive to the truncation. The sensitivity of the solutions to the 
values of N, and N, will be made clear when we present our results in subsequent 
sections. 

The functionshj were produced by combining the homogeneous solutions of (2.16) 
with numerically determined particular solutions of (2.16) so a5 to satisfy the bound- 
ary conditions (2.17). An integration step of 0-001 in r was used in calculating the 
particular solutions. The integrals in (2.20), (2.21), (2.23) and (2.24) were evaluated by 
the trapezoidal method, while those in (2.26) were computed using Bode's five points 
rule (Davis & Polonsky 1964). A data set incorporating all the relevant integrals was 
produced for I < 14 a n d j  < 10. 

The critical Rayleigh numbers Ra,, for the onset of convection can be determined by 
setting the nonlinear terms in (2.18) to zero. The growth rates of perturbations, for 
each value of 1, are then given by the eigenvalues of L,jk. We found these eigenvalues 
to be real (exchange of stabilities), so that the critical Rayleigh number Ra,, for each 1 
corresponds to a zero eigenvalue. Our results, for 7 = 0.5 and N, = 5 ,  are given in 
table 1. As shown in the table, they are in excellent agreement with Chandrasekhar's 
(1961) calculations. 

For Ra > Racr, (2.18) can be integrated with arbitrary values Of 7 z k ( O )  until a steady 
state with T1k = ?1k is reached. When an explicit scheme is used, time steps of o( 
are required to avoid numerical instability. Hence, we develop a fully-implicit scheme 
of integration. A Newton-Raphson method can also be used to find ?lk provided one 
has a good initial guess. This, of course, would be available if one had already estab- 
lished a steady state for an Ra not far from the one under consideration (cf. Clever & 
Busse 1974). The implicit scheme of integration was used to find the steady solutions 
only for Ra slightly larger than Racr. These solutions were then used as initial guesses 
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Ra, Ram 
(Chandrasekhar’s (Chandrasekhar’s 

1961 1961 
1 Ra,,(N, = 5 )  2nd approximation) 3rd approximation) 

1 2086.0 2100.0 2090.0 
2 1095.5 1102.5 - 
3 978.6 985.0 - 
4 1109.5 1117.5 - 
5 1410.0 1418.75 1412.5 

TABLE 1. Critical Rayleigh numbers for the onset of convection in a spherical shell heated from 
below with T/ = 0.5. 

for the Newton-Raphson scheme a t  larger values of Ra. I n  the Newton-Raphson 
procedure, a steady state was assumed to be attained when 

where n is the iteration index. On the average, about 5 iterations were required to 
obtain a steady state. All computations were done on an IBM 370/168. CPU time 
requirements were 9 seconds per iteration with 64 expansion coefficients, and 42 sec- 
onds per iteration with 104 expansion coefficients. 

4. Characteristics of the axisymmetric steady states 
All the numerical results reported in this paper are for a relatively thick shell with 

7 = 0.5. For the Rayleigh numbers considered here, we have found that there generally 
exist two possible steady, axisymmetric solutions for each Ra. One subset of solu- 
tions, which we call ‘even) is characterized by rlk = 0 for odd 1. These solutions have 
equatorially symmetric temperature and radial velocity fields and an equatorially 
ant,isymmetric latitudinal velocity field. The second subset, which we refer to  
as ‘general ’ solutions, includes non-zero values of rlk for both even and odd values 
of 1. The general solutions have no special symmetry characteristics about the 
equator. 

The heat transported by a convective flow is one important characteristic of the 
motion. It can be most readily evaluated at one of the boundaries where all the heat is 
transferred conductively. The heat flux averaged over the inner boundary ( q i )  (the 
brackets on a quantity will denote an average over a spherical surface) is 

A similar expression holds for the average heat flux a t  the outer boundary (qo).  Con- 
servation of energy requires ry(qi) = ri(qo).  For the basic conduction solution, we find 
from (2.4) that  

- kAT a @ ,  kAT rl r2 
Pc = 7 ar = 7 7‘ 
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3.4 

3.0 - 

2.6 - 
Nu, 

1 0 3  2x103 4 X lo3 6 X lo3 8 x 103 104  

Ra 
FIGURE 1. The Nusselt number at the inner shell boundary Nu, tw. Ra for the even, axisymmetric 

steady solutions with N o  = 14. 

The Nusselt number N u  is the ratio of the heat transported by the convective state 
to the heat flux in the basic conductive state 

Conservation of energy requires Nui = Nu,. For the axisymmeric steady states, (2.13) 
and (4.3) gives 

Because the infinite series in (4.4) and (4.5) are truncated a t  j = N ,  in the numerical 
computations, the calculated values of Nui and Nu,, will not necessarily be equal. A 
comparison of these quantities provides a quantitative measure of the accuracy of a 
solution. 

4.1. Heat transfer for the even so2utions 

According to table 1, even solutions exist for Ra > 1095; the minimum Racr for the 
even modes occurs for 1 = 2. Figure 1 shows the variation of Nui with Ra for No = 14 
(8 Legendre polynomials) and N, = 6 , 8  and 10. At Ra = lo4, the change in Nu1 when 
N, is increased from 9 t o  10 is less than 1 yo. The value N, = 8 is generally adequate for 
computations with Ra 5 lo4. Figure 2 shows the Nui - Ra relationship for N, = 8 and 
No = 10, 12 and 14. The change in Nui when No is increased from 12 to 14 is less than 
1 yo at Ra = 4000 and about 2 yo at Ra = 5000. The inflexion in the curve for No = 12, 
which occurs a t  Ra 2 6780, is similar to one reported by Young (1974). However, the 
inflexion seems to be dependent on the resolution since it does not appear in the curves 
for No = 10 and 14. Thus, it has no real physical significance. 
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3.4 - 

3.0 - 

2.6 - 

7.7 - 
L. .  

1.8 - 

1.4 - 

Ra 
FIGURE 2. Same aa figure 1 with N ,  = 8. 
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.- 0.16 
3 
% - 

0.12 
I 
0 

v s 
0.08 

0.04 

0 

103 2x103 4 x  103  6 X lo3 8 X  lo3 1 o4 
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FIGURE 3. The fractional difference between the Nusselt numbers evaluated at the inner and 
outer shell radii, Nu, and Nu,, respectively, as a function of Rayleigh number Ra for N o  = 14. 

Figures 3 and 4 show (Nu,  - Nui) /Nui  us. Ra. In  figure 3, No = 14 and N, = 6,8, and 
10, while in figure 4, N, = 8 and No = 10, 12 and 14. For the most accurate solution, 
N, = 10, No = 14, it can be seen from figure 3 that the numerical error in the energy 
balance is about 7.5% a t  Ra = lo4. Greater accuracy can be obtained by further 
increasing N, and No. 
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0.20 

0.16 

z -- 0.12 s 
I p 0.08 - 

0.04 

103 2x103 4 ~ 1 0 ~  6 X lo3 8 X lo3 

Ra 

F I ~ ~ R E  4. Same as figure 3 with N ,  = 8. 

104 

103 2 x 103 

Ra 
3 x 1 0 3  

FIGURE 5. Same as figure 2 for the general, axisymmetric, steady solutions. 

4.2, Heat transfer for the general solutions 

General solutions are possible for Ra > 978; the minimum Racr for all 1 occurs for 1 = 3 
(see table 1) .  Figure 5 shows Nui us. Ra for N, = 8 and No = 7,9 and 12. The largest Ra 
at which a steady state was obtained with our numerical approach depended on the 
resolution. We were able to determine solutions for Ra < 2600 with No = 7, for 
Ra < 3000 with No = 9 and for Ra < 3200 with Ne = 12. With N, = 8 and Ne = 12, the 
general solutions require 104 expansion coefficients. For larger values of N, and No, the 
computations would become rather expensive. The error in the energy balance 
(Nu,- Nui)/Nui is less than 7 yo for 978 < Ra < 3200. The general solutions transport 
slightly more heat than do the even solutions in this range of Ra. 



266 A .  Zebib, G .  Schubert and J .  M .  Xtraus 

1 .oo 1.25 1 .so 1.75 2.00 
r 

FIGURE 6. The spherically averaged temperature profile (0) + 0, for the even axisymmetric 
solutions with N ,  = 8 and N ,  = 14 at several different Rayleigh numbers. The conduction 
temperature profile 0, is also shown. 

4.3. Mean temperature projiles for the even solutions 
The spherically averaged temperature profile is 0, + (0). Using (2.4) and (2.13) we can 
write 00 r r  

0, -I- (0) = L2 -rl + sin A,(r - rl). 
r j= 1 

Figure 6 shows 0, + (0) vs. r a t  several values of Ra for the even solutions with N, = 8 
and N, = 14. The basic state conduction temperature profile is also shown. Convection 
tends to produce a nearly uniform spherically averaged temperature, in the interior of 
the shell. At the higher values of Ra, the temperature drop across the outer thermal 
boundary layer is only about 1 as large as the change in mean temperature across the 
inner boundary layer. Also, the inner thermal boundary layer is about as thick as the 
outer one. This is consistent with the constancy of total heat flow through the shell 
since the ratio of the inner to the outer surface areas is 1. At Ra = 6 x lo3 and lo4, the 
spherically averaged temperature actually increases with r in the interior of the shell. In  
a plane layer, the value of the nearly uniform interior mean temperature a t  high Ra is 
about 0.5; the much smaller value for the spherical shell is simply a consequence of the 
distribution of mass with radius in the spherical geometry (the volume-averaged value 
of 0, is only 5, for example, when 7 = 0.5). An estimate of this nearly uniform, steady, 
interior mean temperature (0,) can be derived by equating the heat transfer a t  the 
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I .oo 1.25  1 .so 1 .I5 2.00 
r 

FIGURE 7. Same as figure 6 with N ,  = 8 and N o  = 9. 

where 6, and 8, denote the thicknesses of the thermal boundary layers which form at 
the inner and outer boundaries at high Rayleigh number. With 6, w 6, we find 

which, for 7 = 0.5, gives (0,) = 0.2, close to the value of about 0.22 shown in figure 6 .  

4.4. Mean temperature projiles for the general solutions 

Figure 7 shows 0, + (0) us. r a t  Ra = 2000 and 3000 for the general solutions with 
N, = 8 and No = 9. These temperature profiles are quite similar to the ones obtained 
for the even solutions. Even a t  the relatively low value of Ra = 3000, the spherically 
averaged temperature in the interior of the shell is nearly uniform a t  about 0.24 and 
boundary layers of comparable thickness can be discerned at the inner and outer shell 
boundaries. 

4.5. Isotherms and streamlines for the even solutions 

Streamlines and isotherms in a meridional plane are shown in figure 8 for the even 
solutions with N, = 8 and No = 14 a t  Ra = 2000, 6000 and 10000. Because of the 
symmetry of the solutions about the equatorial plane, only the range 0 6 0 < 47r is 
shown. There is one fast cell and one slow one in each hemisphere. This indicates that 
the motion is dominated by the 1 = 4 mode. There is upwelling at the equator and at the 
poles. The fast cell adjacent to  the equator grows in size as Ra increases while the 
slower, counter-rotating cell is confined more to the polar region. The distortion of the 
isotherms is as expected from the character of the streamlines. 
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(0.8 ' 0.8 
FIQURE 8. (a) Streamlines and (b) isotherms in 8 meridional plane for even axisymmetric solu- 

tions with NI = 8 and N o  = 14. (i) Ra = 2000; (ii) Ra = 6000; (iii) Ra = 10000. 

4.6. Isotherms and streamlines for the general solutions 
Figure 9 shows the streamlines and isotherms in a meridional plane for the general 
solutions with X, = 8 and N, = 9 at Rn = 2000 and 3000. It is seen that the general 
solutions represent an l = 3 convective motion. The equatorial cell rotates more 
rapidly than do the polar cells. Upwelling occurs a t  one of the poles and at  about 45" 
latitude in the opposite hemisphere. The asymmetry about the equator is particularly 
obvious in the isotherm patterns. 

4.7. Spectral content of (W), ($2) ($2): even solutions 
The contributions of individual surface harmonics to the convective motions can be 
assessed by computing the spherically averaged kinetic energies (v;) and (v i )  and the 
mean square temperature deviation (02) from (2.8), (2.13) and (2.14). These quantities 

are given by 5 

<v;> = z m' (4.9) 
2-0 

where 

where 

(4.10) 

(4.11) 

(4.12) 
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FIGURE 9. Same as figure 8 for the general axisymmetric solutions with N ,  = 8 and No = 9. 
(i) Ra = 2000; (ii) Ra = 3000. 

and by 

where 
j=l 

(4.13) 

(4.14) 

Table 2 gives the spectral components (v:),, and (02X for the even solution with 
Ra = 3000, N, = 8, No = 14 at r = 1.2, 1.5 and 1.8. The solution is strongly dominated 
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by the 1 = 4 mode; the 1 = 2 mode is the next most important contributor to the flow. 
It is interesting that while the 1 = 2 mode has the minimum critical Rayleigh number 
for the even modes, the 1 = 4 mode dominates the finite amplitude solution at 
R a  = 3000. 

4.8. Spectral content of (W),  (I$), (vi): general solutions 

The spectral contributions of individual spherical harmonics to the general solutions 
for R a  = 3000 and N, = 8, No = 9 are given in table 3. The dominant mode is clearly 
1 = 3, which also has the minimum critical Rayleigh number for the onset of convection 
in the spherical shell. The 1 = 6 mode, which makes the next most important contri- 
bution to the flow, is undoubtedly generated by the nonlinear interaction of 1 = 3 with 
itself. The 1 = 2 and 1 = 4 modes make small, but non-negligible, contributions to this 
odd mode-dominated general solution. 

5. The preferred axisymmetric steady solutions 
In this section we consider the stability of the even axisymmetric steady solutions 

to a general axisymmetric perturbation. The even steady states satisfy [see equation 

m m m 
(2- w1 

= I: LZjk7Zj+ x 2 NnmijZk7nd7mj, (6.1) 
j = l  n,m=0,2.4 1.j-1 

with Tlj = 0 for 1 odd. A stability analysis can be carried out by substituting 

7lj = T,,+r;j 

in (2.18), using (5.1) to simplify the result. One finds the linearized equations 

where 

2 m m  

m m  

(5.3) 

The growth or decay rates of the perturbations are given by the eigenvalues u of 
Elknd. We have found the eigenvalue with the largest real part to be real. Figure 10 
shows the maximum eigenvalue Max(u) as a function of R a  for N, = 8 and No = 10, 12, 
and 14. The determination of u is seen to be sensitive to No. For R a  5 4400 it  is clear 
that Umax is accurately determined for N, = 14. Since u m a x  > 0, we conclude that the 
even solutions are unstable and that the general solutions represent the preferred 
steady axisymmetric convective motion for R a  5 4400. To determine the stability of 
even solutions at  higher values of R a  would require a more accurate computation of the 
steady states. 

6. Stability of the axisymmetric steady states to azimuthal perturbations 
Linear stability theory (Chandrasekhar 1961) is capable of predicting Racr and the 

number of cells in a meridional plane. However, the eigensolutions are degenerate and 
one cannot determine whether the motion is axisymmetric or non-axisymmetric. 
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FIGURE 10. The maximum eigenvalue a,, as a function of Ra for a linearized stability analysis 
of even axisymmetric steady states to general axisymmetric perturbations. u positive indicates 
growth or instability. N ,  = 8. 

Busse (1975) has resolved the degeneracy of even axisymmetric solutions for slightly 
supercritical Ra. However, his results are not applicable in our case (q = 0.5) since the 
minimum Racr corresponds to an odd mode (1 = 3) and we have already determined 
that the preferred axisymmetric steady states are the general solutions. Thus, we must 
still resolve the issue of the stability of the axisymmetric steady states, in particular 
the general solutions, to azimuthal perturbations. 

We consider an infinitesimal three-dimensional perturbation (denoted by primes) 
superimposed on the steady axisymmetric solution @, 6. By analogy with the forms of 
the expansions (2.13) and (2.14) for and 6, the perturbations 0’ and 0‘ are assumed 
to have the representations 

w m  

O’ = 2 x #( t )  4 2  sinjn(r - r l )  c o s / ? ~ ~ ~ ( c o s  61, 

@’ = 2 2 (1 - 7) RaT$(t) r&(r) COS~C$P{(COS 8), 

(6.1) 

(6.2) 

Z-0 j=1 

m a ,  

I = O  j=1 

where /? = 1,2, . . . , I and Pf are normalized Legendre functions 

The differential equation for ~ ; 5 8  is obtained by substituting (2.13) and (2.14) for 
0, @and (6.1) and (6.2) for O’, @’ into (2.3), linearizing the resulting expression, multi- 
plying by sinjn(r - T ~ )  cos,8C$Pf(cos 8)  and integrating over the volume of the spherical 
shell. In  carrying out the above one obtains the velocity from + @‘ using (2.8); use is 
also made ofthe fact that TI, satisfy (2.18) with dTlj/dt = 0. After considerable algebra 

d one finds 
-T;[ = C. 2 FLni7;$, I = P,p+ 1, ... 
dt n=b 

- -  

w m  

(6.4) 
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L 

" 
103 2 x 1 0 3  3 x 103 

Ra 

FIGURE 11. The largest value of CT as a function of Rayleigh number for azimuthal perturbations 
of tho general axisymmetric solutions. /3 is the azimuthal wave number. N ,  = 8 and NO = 9. 
Positive CT indicates instability. 

where 

Gtpm, = S+*p,(x)~~(x)P~(r)dx, -1 

and Lzik, Cniik, Dmiik, amnz are given by (2.19), (2.23)-(2.25). 
The eigenvalues of FLni, denoted by v, represent either the growth or decay rates 

of the perturbation. We have found the eigenvalue with the largest real part to be real; 
thus the axisymmetric steady solutions are stable only if vmax < 0. Figure I1 shows 
vmax as a function of Ra for the general solutions with N, = 9 and N, = 8. It is seen 
that perturbations with /3 = 2, 4 and 5 are decaying, while perturbations with /3 = 1 
are neutral. Perturbations with p = 3 are growing for Ra 5 1280 and decaying for 
Ra 2 1280. Thus, one concludes that while three-dimensional convection is preferred 
at the onset of convection, steady axisymmetric general solutions are stable for 
Ra 2 1280. While axisymmetric general solutions are stable for Ra 2 1280, they are 
not necessarily preferred over the non-axisymmetric solutions. For these Rayleigh 
numbers, axisymmetric general solutions and non-axisymmetric solutions may both 
be equally likely forms of steady convection, with only initial conditions determining 
which solution is realized. 

The numerical calculations for the stability of the general axisymmetric solutions to 
azimuthal disturbances have shown that perturbations with j3 = 1 are neutral. This 
result can also be seen analytically as follows (F. Busse, personal communication). 
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FIGURE 12. Same as figure 11 for the stability of even axisymmetric solutions to azimuthal 
perturbations. N ,  = 8, NO = 12. 

Consider the expression for 0 resulting from the superposition of the general axisym- 
metric steady solution and a p = 1 perturbation, 

m o o  

0 = 2 4 2  sin hj(r - r l )  {T~~&(COS 8)  + 7;; cos $P:(cos 8)). 
E=O j=1 

With the aid of the addition theorem for Legendre functions (Smythe 1968, p. 165), we 
can rewrite (6.7) as m o o  

0 = T ~ ~ , 2 s i n h 5 ( r - r , ) ~ ( c o s 8 ' ) ,  (6.8) 
I-0 j-1 

where 8' is the co-latitude measured from the axis of a new co-ordinate system whose 
axis is inclined by the small angle E, 

with respect to the axis of the original ( r ,  8,$)  co-ordinate system. Equation (6.8) is 
correct only to O ( E ) .  Thus, the perturbation coefficients 7;$ = e?&(l+ l))* represent 
a steady axisymmetric solution to the linearized equations in a frame of reference 
infinitesimally close to the original co-ordinate system. As a result, we can conclude 
that there exists an eigensolution for a p = 1 perturbation that corresponds to cr = 0. 
We have, in fact, verified numerically that the ratio 7i: /{Tl j ( t (1  + l))*) is constant for the 
neutral solutions with p = 1,  

Figure 12 shows urnax us. Ra for the even, axisymmetric, steady solutions with 
N, = 8 and No = 12. At the onset of convection, the growth of perturbations with 
/3 = 1 ,2 ,3 ,4  shows that the preferred motion is fully three-dimensional. This is in 
agreement with Russe's (1975) results. However, the even solutions are stable to 
azimuthal perturbations for Ra > 1800. While there is a growing perturbation with 
/3 = 1 for slightly supercritical Ra ( 5  1260), we have also found the neutral solution 
for these values of Ra. The stability of the even solutions to azimuthal perturbations 
is of limited physical significance, since the even solutions are always unstable to the 
general ones. 
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7. Summary 
We have carried out numerical calculations of axisymmetric convective motions in a 

spherical shell heated from below with 7 = 0.5. For a given Rayleigh number, there 
exists either a 4-cell equatorially symmetric solution or a 3-cell general solution. The 
even axisymmetric solutions have been studied for Ra as large as about 10 times the 
critical value, while the general, axisymmetric solutions have been investigated only 
for Ra up to about 3 times the critical value. A linear stability analysis indicates that 
the preferred axisymmetric convection includes contributions from both even and odd 
Legendre functions, i.e. the equatorially symmetric motions are unstable to general 
axisymmetric perturbations. A linearized stability analysis of the axisymmetric 
solutions to azimuthal perturbations shows that fully three-dimensional motions are 
to be expected at the onset of convection; however, axisymmetric convection is stable, 
though not necessarily preferred for Ra 2 1280. The present study has been limited to 
isothermal, stress-free boundaries with no internal heating. Extensions to other boun- 
dary conditions (e.g. adiabatic lower boundary) with internal heating are in progress. 

This research was supported by the Planetology Program, Office of Space Science, 
N.A.S.A. grant NGR 05-007-317, by NSF grant EAR 77-15198 and by the Aerospace 
Sponsored Research Program. Computing funds were contributed by the University of 
California, Los Angeles and by Rutgers University. We thank F. H. Busse for helpful 
discussions. 

Appendix 
A general representation of the solenoidal velocity field is 

v = o  ( ,----- s:n :$, $) + poloidal part given in (2.8), 

where x represents the toroidal part of v (Chandrasekhar 1961). From the equation of 
motion ( 2 . 2 ) ,  it is straightforward to conclude that 

V2L2(X/r) = 0. (A 2 )  

Since X/r satisfies (A 2) it  is also a solution of Laplace’s equation (this is true for all the 
spherical harmonic components of x / r  except perhaps for the 1 = 0 term which does not 
contribute to v anyway). Thus ( x l r )  = 0 since V2(X/r )  = 0 and X/r satisfies homogen- 
eous boundary conditions on the inner and outer surfaces of the spherical shell. 
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